Residual beta cell function and microbiome in type 1 diabetes

No registrations found.

Ethical review Positive opinion **Status** Recruiting

Health condition type -

Study type Observational non invasive

Summary

ID

NL-OMON25270

Source NTR

Brief title

GUTDM1 cohort

Health condition

type 1 diabetes

Sponsors and support

Primary sponsor: DFN-DON

Source(s) of monetary or material Support: DFN-DON

Intervention

Outcome measures

Primary outcome

associations between residual beta cell function (2-hour post-meal urinary C-peptide / creatinine ratio), gut microbiome composition and circulating T-cell immune cell function

Secondary outcome

Correlation of above mentioned primary endpoints with:

- -Frequency of Hypoglycemia
- Awareness of hypoglycemia
- presence off Diabetic complications
- Circulating (T cell) immune cell panel including HLA type
- Fecal microbial composition (illumina 16s ribosomal RNA sequencing)
- Plasma microbial metabolomics
- Sex
- Age
- Duration of type 1 diabetes
- Smoking
- Medication use
- Diabetic complications
- Abdominal complaints

Recorded at the study visit

- · Blood pressure
- BMI
- Glucose time in range from continuous glucose monitoring device (Free style libre) .
- Serum creatinine and calculated eGFR
- Lipid profile (total cholesterol, HDL, LDL triglycerids)
- urinary Albuminuria/creatinine ratio
- HbA1c
- CRP

Study description

Background summary

It has become apparent that most individuals with type 1 diabetes mellitus (T1D) have some remaining beta cell function. Individuals with T1D and a preserved beta cell mass have a lower risk of hypoglycaemia and diabetic complications. The factors regulating residual beta cell function are unknown. A likely mechanism leading to a large beta cell reserve is regulation of immunological tone by the gut microbiome. Therefore, we will investigate whether residual beta cell mass is associated with gut micro-biome composition and circulating immune cell counts in individuals with T1D.

Study objective

The association between the gut microbiome/virome, T-cell exhaustion and immunotolerance in T1D constitutes an important knowledge gap and may serve as a therapeutic target in T1D, that will be adressed in this cohort study.

Study design

1 day (only one study visit)

Intervention

none

Contacts

Public

AMC

max nieuwdorp

0031 20 5666612

Scientific

AMC

max nieuwdorp

0031 20 5666612

Eligibility criteria

Inclusion criteria

All individuals with T1D visiting the outpatient clinic of recruiting centres in the greater Amsterdam region >18 years old.

Exclusion criteria

- Active infection at the time of inclusion (not to influence immune-cell function)
- Antibiotic or proton-pump inhibitor use last 3 months (not to influence microbiome)
- Unwillingness to donate feces, urine and/or blood
- Inability to provide informed consent based on cognitive function, language barrier or other reasons
- Absence of large bowel (ie colostomy).

Study design

Design

Study type: Observational non invasive

Intervention model: Other

Allocation: Non controlled trial

Masking: Open (masking not used)

Control: N/A, unknown

Recruitment

NL

Recruitment status: Recruiting

Start date (anticipated): 01-09-2020

Enrollment: 500

Type: Anticipated

IPD sharing statement

Plan to share IPD: Undecided

Plan description

n/a

Ethics review

Positive opinion

Date: 24-09-2020

Application type: First submission

Study registrations

Followed up by the following (possibly more current) registration

No registrations found.

Other (possibly less up-to-date) registrations in this register

No registrations found.

In other registers

Register ID

NTR-new NL8931

Other METC AMC: 2020-105

Study results

Summary results

will follow